ΔN-P63α and TA-P63α exhibit intrinsic differences in transactivation specificities that depend on distinct features of DNA target sites

نویسندگان

  • Paola Monti
  • Yari Ciribilli
  • Alessandra Bisio
  • Giorgia Foggetti
  • Ivan Raimondi
  • Paola Campomenosi
  • Paola Menichini
  • Gilberto Fronza
  • Alberto Inga
چکیده

TP63 is a member of the TP53 gene family that encodes for up to ten different TA and ∆N isoforms through alternative promoter usage and alternative splicing. Besides being a master regulator of gene expression for squamous epithelial proliferation, differentiation and maintenance, P63, through differential expression of its isoforms, plays important roles in tumorigenesis. All P63 isoforms share an immunoglobulin-like folded DNA binding domain responsible for binding to sequence-specific response elements (REs), whose overall consensus sequence is similar to that of the canonical p53 RE. Using a defined assay in yeast, where P63 isoforms and RE sequences are the only variables, and gene expression assays in human cell lines, we demonstrated that human TA- and ∆N-P63α proteins exhibited differences in transactivation specificity not observed with the corresponding P73 or P53 protein isoforms. These differences 1) were dependent on specific features of the RE sequence, 2) could be related to intrinsic differences in their oligomeric state and cooperative DNA binding, and 3) appeared to be conserved in evolution. Sicen genotoxic stress can change relative ratio of TA- and ∆N-P63α protein levels, the different transactivation specificity of each P63 isoform could potentially influence cellular responses to specific stresses.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Correction: p63α modulates c-Myc activity via direct interaction and regulation of MM1 protein stability

Both p53-related p63 and c-Myc are transcription factors playing key roles in cell proliferation, survival, development and tumorigenesis. In the present study, we identified that MM1, a c-Myc inhibitor, specifically binds to C-termini of p63α (including ΔNp63α and TAp63α). Further study demonstrates that p63α facilitates MM1 protein degradation via proteasomal pathway, resulting in elevation o...

متن کامل

XIAP RING domain mediates miR-4295 expression and subsequently inhibiting p63α protein translation and promoting transformation of bladder epithelial cells

The X-linked inhibitor of apoptosis protein (XIAP) contains three N-terminal BIR domains that mediate anti-apoptosis and one C-terminal RING finger domain whose function(s) are not fully defined. Here we show that the RING domain of XIAP strongly inhibits the expression of p63α, a known tumor suppressor. XIAP knockdown in urothelial cells or RING deletion in knockin mice markedly upregulates p6...

متن کامل

TAp63γ and ΔNp63γ are regulated by RBM38 via mRNA stability and have an opposing function in growth suppression

The p63 gene is expressed as TAp63 from the P1 promoter and as ΔNp63 from the P2 promoter. Through alternative splicing, five TA and five ΔN isoforms (α-ε) are expressed. Isoforms α-β and δ share an identical 3' untranslated region (3'UTR) whereas isoform γ has a unique 3'UTR. Recently, we found that RBM38 RNA-binding protein is a target of p63 and RBM38 in turn regulates p63α/β expression via ...

متن کامل

Functional evolution of bacterial histone-like HU proteins.

Bacterial histone-like HU proteins are critical to maintenance of the nucleoid structure. In addition, they participate in all DNA-dependent functions, including replication, repair, recombination and gene regulation. In these capacities, their function is typically architectural, inducing a specific DNA topology that promotes assembly of higher-order nucleo-protein structures. Although HU prot...

متن کامل

Functional analyses of the transcription factor Sp4 reveal properties distinct from Sp1 and Sp3.

Sp4 is a human sequence-specific DNA binding protein with structural features similar to those described for the transcription factors Sp1 and Sp3. These three proteins contain two glutamine-rich regions and a highly conserved DNA binding domain composed of three zinc fingers. Consistently, Sp1, Sp3, and Sp4 do have the same DNA binding specificities. In this report, we have embarked on a detai...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2014